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A new double-lattice model, which is capable of describing and predicting the equilibrium properties of binary 
polymer solutions, was proposed by modifying Hu's double-lattice model by introducing a new interaction 
parameter and simplifying the expression of the Helmholtz energy of mixing. Using the proposed model, we 
investigated phase behaviours of various binary polymer solutions. The modified double-lattice model 
successfully describes the phase behaviours of binary polymer solutions having an upper critical solution 
temperature (UCST) and a lower critical solution temperature (LCST). © 1997 Elsevier Science Ltd. All rights 
reserved. 
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INTRODUCTION 

The phase behaviours of binary polymer systems differ from 
that for ordinary liquid mixtures because of the large 
molecular size difference of the components. Calculations 
involving phase behaviours of polymeric liquids are 
required in the design and operation of many polymer 
processes such as polymerization, devolatization, drying, 
extrusion and design of heat exchanger. 

A variety of theories of polymer solutions and blends 
have been developed during the last 50 years. A lattice 
model, one of the molecular-based thermodynamic frame 
works, has been successfully used to describe phase 
behaviours of polymeric liquids. 

The most widely used and best known of the incompres- 
sible-lattice model is the Flory-Huggins lattice 1'2, which 
illustrates in a simple way the competition between the 
entropy of mixing and the attraction forces producing 
liquid-liquid phase separation. Much work have been 
performed to improve the mathematical solution of the 
lattice model, including chain-connectivity and non-random 
mixing. However, the Flory-Huggins model and quasi- 
chemical model 3 show systematic deviations, giving too 
narrow or parabolic liquid-liquid coexistence curves near 
the critical region from the computer simulation data or 
experimental data. 

To account for compressibility and density changes upon 
isothermal mixing, Sanchez and Lacombe4'5 and Kleintjens 
and Koningsveld U have derived different forms of a lattice- 
fluid model based on the Flory-Huggins lattice, ignoring 
the equation of state properties of the pure components. A 
group-contribution lattice-fluid equation of state for the 
prediction of vapour-liquid equilibria in polymer solutions 
was developed by High and Danner 7-9 and modified by Lee 

10 and Danner . On the other hand, free volume theories for 
polymer solutions were developed by numerous investiga- 
tions, notably by Flory 11 and by Patterson and Delmas 2. 
These theories were based on a generalized form of the van 

* To w h o m  cor respondence  should be addressed 

der Waals partition function, which is the product of two 
independent partition functions: one accounts for free 
volume and the other for attractive forces. Heil and 
Prausnitz 13, and later Brandani 14"15, Vera 16, McMaster 17 
and Xie e t  al.18 developed a theory taking into account local 
composition. Bae e t  al. 19-21 reported the extended Flory- 
Huggins theory for binary polymer systems. 

If strong or oriented interactions from hydrogen bonding 
or other specific forces exist in the system, LCST or 
miscibility loops can arise as first indicated by Hirschfelder 
e t  al.  22 for mixtures of ordinary liquids, and Barker and 
Fock 23 proposed a quasi-chemical method to account for 
such specific interactions. Painter e t  al.  24 reported a Gibbs 
free energy method for polymers that hydrogen bond using 
the chemical theory to account for the formation of 
associated species and the lattice theory to describe the 
non-ideal interactions between the associated species. 
Sanchez and Balazs 25 generalized the lattice-fluid model 
to account for the specific interactions. 

Furthermore, Freed e t a / . ,  26-28 developed a complicated 
lattice-field theory for polymer solutions which is formally 
an exact mathematical solution of the Flory-Huggins 
lattice. Good agreement was found between predicted 
results and the computer simulation data by Dickman and 
Hall 29 for the chain insertion probability and for pressures in 
a system of athermal chains and voids. However, for 
practical reasons, the infinite series with respect to 
coordination number, temperature and composition in this 
theory are truncated at a certain order. Recently, Hu 

r 3031 
e t  al.  " reported a double-lattice model based on Freed s 
theory. In their model, ordinary polymer solutions are 
described by the primary lattice, while a secondary lattice is 
introduced as a perturbation to account for oriented 
interactions. 

In this study, we modified Hu's double-lattice model by 
introducing a new interaction parameter and simplifying the 
expression of the Helmholtz energy of mixing. Using our 
proposed model, we investigated phase behaviours of binary 
polymer solutions. 
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MODEL DEVELOPMENT 

At temperature T, the canonical partition function of the 
primary lattice for a binary mixture, Q, is given by 

Q= ~ g(NI,FI,N2, F2,NI2)[ex p (Sill1N' '  [exp (< hl 
N,2 kTJJ \ kTYJ 

X [exp (8'2"~I u'= kTYJ (1) 
w h e r e  N1 and N 2 a re  numbers of molecules of solvent and 
polymer, respectively. Nil, N22 and NI2 a r e  the numbers 
of 1-1, 2-2, and 1-2 nearest-neighbour (non-bonded) 
segment-segment pairs, respectively, r2 is the number of 
segments in the polymer molecule relative to rl = 1 for the 
solvent, g(N1, r~, N2, r2, N12) is the combinatorial factor 
which depends on the number of 1-2 segment-segment 
pairs. The positive energy parameters, 8~, 822 and e~: are 
for the corresponding nearest-neighbour segment-segment 
interactions, k is the Boltzmann's constant. 

Primary lattice 
The general form of the Helmholtz energy of mixing 

based on the Freed's theory can be expressed as 

~4"/UrkT = (qS,/rl)ln ~1 "Jr- (qbffr2)ln q52 + Z Z amn dpr~dp'~ 
m n 

(2) 
where Nr is the number of lattice sites for the mixture and ~b~ 
is the volume fraction of component i. Coefficients ann are 
functions of z, rl, r2 and energy parameters. To obtain an 
analytical expression for the Helmholtz energy of mixing 
for the primary lattice, Hu et al. 30'31 employed only the first- 
order term multiplied by empirical coefficients. 

In this study, we defined new Helmholtz energy of mixing 
as the form of the Flory-Huggins theory. This expression is 
given by 

~4/NrkT = (qS1/r l)ln ~1 JI- (~b2/r2)ln q52 + XOBq~l~2 (3) 

where XoB is a new interaction parameter defined by 

O÷ (4) 

-- (r~ 1-}-CYg3) a~c~2-}-cy~2¢2 

where Ct~ and Cy are universal constants. These constants 
are not adjustable parameters and are determined by com- 
paring with Madden et al.' s Monte-Carlo simulation data 32. 

is a reduced interaction parameter given by 

= 81kT = (811 q- 822 - -  2el2)/kT (5) 

Figure 1 shows the comparison of coexistence curves cal- 
culated from this work and the Flory-Huggins model with 
computer simulation results. The best-fit values of C~ and 
C v are 0.1415144 and 1.798599, respectively. 

Secondary lattice 
In Freed' s theory, the solution of the Helmholtz energy of 

mixing for the Ising model is given by 

AA/NrkT = x I In xl + x21n x2 + zexlx2/2 - ze2x2x2/4 +. . .  
(6) 

where z is the coordination number and x~ is the mole frac- 
tion of the component i. 

To obtain an analytical expression for the secondary 

4 
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7 
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Figure 1 Comparison of coexistence curves calculated from this work 
and the Flory-Huggins model with computer simulation results• The dotted 
line is calculated from the Flory-Huggins model and the solid line is 
calculated from this work with C~ = 0.1415144 and Cv = 1 •798599. Open 
circles are from Madden's Monte-Carlo simulation data 

lattice, Hu et al. 3°'3! revised equation (6) to improve the 
coexistence curves by introducing two empirical coeffi- 
cients and adding the additional energy of the reference 
state. Hu et al.'s expression of Helmholtz energy of mixing 
is given by 

Z ~ s e c ,  ij  2 
= z[r/In ~7 + (1 - ~/)ln(1 - ~7) - Zg)g~ij~ 2]2 

NqkT 

- -  C 2 Z ( ~ S i j ) 2 " 0 2 ( 1  - -  r / ) 2 / 4  - -  c l o Z ( t 3 ~ . i j ) l O r l l O ( 1  - -  7) 10] (7) 

where AAsec,0 is the Helmholtz energy of mixing of the 
secondary lattice for i-j  segment-segment pair and N 0 is 
the number of i-j  pairs, 6~ is the reduced energy parameter 
contributed by the oriented interactions and ~ is the surface 
fraction permitting oriented interactions. For simplicity, 
Hu et al. arbitrarily set ~ to 0.3. C2 and cm are empirical 
coefficients in their model. 

In this study, we defined a new Helmholtz energy of 
mixing as the fractional form to improve the mathematical 
approximation defect and to reduce the number of 
parameters. The expression is given by 

~XAsec, ij 2 [  zCu~ij(1-~)~l ] 
NijkT z ~ / ln~+(1 -~ / ) l n (1 -~7 )+  l ~ i - ~ - ~ n ) ~  j 

(8) 
where C~ is a universal constant. 

Ca is also not an adjustable parameter and is determined 
by comparing with Panagiotopolous et al.'s Gibbs-ensemble 
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Figure 2 Comparison of the Ising lattice coexistence curves calculated 
from this work and a random mixing model with computer simulation 
results• The dotted line is calculated from the random mixing model and the 
solid line is calculated from this work with C~ = 0.4880785. Open circles 
are from Panagiotopolous's Gibbs-ensemble Monte-Carlo simulation data 

Monte-Carlo simulation data of the Ising lattice 33. Figure 2 
shows the comparison of the Ising lattice coexistence curve 
calculated from this work and random mixing model with 
computer simulation results. The best-fit value of Ca is 
0.4880785. 

Incorporation of secondary lattice into primary lattice 
To account for the oriented interaction, Hu et al. 

employed a secondary lattice. The secondary lattice 
contribution is a perturbation to the primary lattice. To 
incorporate a secondary lattice, we replace e 0 by 
eij- &4sec, o/Nij in equation (1). Following the definition 
of e in equation (5), if oriented interactions occur in i-j 
segment-segment pairs, we replace ~ by 
e/kT + 2AAsec, ij/NijkT in equation (4). If oriented inter- 
actions occur in i-i segment-segment pairs, ~ is replaced by 
e/kT q- ,~Asec, ii/NiikT. 

Correlating equations 
For calculating the binary coexistence curve, we require a 

chemical potential of components 1 and 2. They are given 
by 

Akq /k T = O( AA/k T)ION1, 

(' A//'I ln(1 -- ~b2) -- r I -- q~2 
g f -  72 

4 - r 1 [ C ~ ( 1 - 1 ~ 2 4 - ( ( 1 - 1 )  4-C'/~) r2 

4- ( 2  + 1 )  g:] qb~ -- 2rl I ( ( 1  -- 1 )  4- Cvg:) g: 

+ I + 3r, 

Alz2/kT = O( AA/kT)/ON2, 

AI~2 
kT 

(9) 

= In q~2 4- r2 -- + C~ -- - 
r2 

+ ( 2 + 1 ) ~ ] - r 2 [ ( 1 - 1 ) + 2 ( ( 1 - 1 )  

+ r2 [4 ( ( 1 -  1 )  + Cvg:)k + (2  + 1 )  ~ 

-r2[6C, e 2 + 2 ( ( 1 - 1 ) + C y ~ ) ~ ] q ~  

4- 3r2C~2~b 4 (10) 

The coexistence curve is found from the following conditions: 

A/*'1 = A/x"j (1 1) 

A/~' 2 = AP'"2 (12) 

where a prime (') and double prime (") denote two phases at 
equilibrium. 

For phase equilibrium calculation, we require the 
experimental coordinates of the critical point. We find 
these coordinates using 

O2(~A/N~kT) 
= 0  

which leads to 

02(ZL4/NFkT)-I  ( 1  1)  
&b 2 - - l _ ~ b  2 rj 722-71 

and 

which leads to 

O3 ( LL4/NrkT) 

+ 2rl C~ - + - 

-6r l ( ( (1-1)+Cvgz)gz+Cvg:2)O~ 

+ 12q C~2q~ (13) 

03(AAINrkT) 
= 0  a4,  

- 1  2 
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- 12rl ( ( ( 1 -  1) + C-/e) ~ 

+ 36q Cy~2~b~ 

"[" Cy ~2 ) ~2 455 

(14) 450 

RESULTS AND DISCUSSION 

For the systems (two different polymer chains, polymer/ 
solvent system, etc.) that interact strongly, they must be in 
the correct orientation to each other, i.e. a specific 
interaction. In these systems, the primary lattice alone 
always yields a narrower coexistence curve. Therefore, to 
obtain a satisfactory fit, we introduced the secondary lattice. 

Figure 3 shows coexistence curves for poly(isobutene) 
(PIB, Mw = 22700)/diisobutyl ketone (DIBK) and the 
system shows a UCST behaviour. The dotted line is 
predicted by using a single lattice and the solid line is 
predicted using a double lattice. Open circles are experi- 
mental data by Shultz and Flory 34. As shown in Figure 3, a 
single lattice gives a narrow coexistence curve, while using 
a double lattice, we obtain an excellent fit. The model 
adjustable parameter values are r2 = 139.48, e/k = 
-334 .87K and 8ell/k = - 1 0 8 7 . 1 K  when using a double 
lattice and r2 = 139.48 and elk = 84.863K for a single 
lattice. 

Figure 4 shows coexistence curves for polystyrene (PS)/ 
ethyl acetate systems and those systems exhibit LCST 
behaviours. The solid lines are predicted by this work. Open 
circles are experimental data by Bae et al. 19. The proposed 
model agrees very well with the experimental data. The 
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Figure  3 Coexistence curves for PIB (Mw = 22700) /DIBK system 
showing cloudpoint temperatures as functions of the weight  fraction of PIB. 
The dotted line is calculated using a single lattice and the solid line is 
calculated using a double lattice. Open circles are from Shultz and Flory 's  
experimental  data 
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Figure 4 Coexistence curves for three PS/ethyl acetate systems showing 
cloudpoint temperatures as functions of the weight fraction of PS. The solid 
lines are calculated from this work. Squares, circles and triangles are from 
Bae's experimental data for molecular weights (Mw) 600000, 233 000 and 
100 000, respectivelyl9 

model adjustable parameter values are r2 -- 170.39, e/k = 
- 7 8 6 . 2 8 K  and be 12/k = 7053.2K for a PS molecular weight 
of  100000 (Mw/Mn = 1.06); r2 = 405.10, e/k = 1318.3K 
and 6elffk = - 1 5 6 4 . 3 K  for a PS molecular weight of 
233 000 (Mw/Mn = 1.06); r2 = 1110.5, e/k = 1109.2K and 
6elz/k = - 1352.6K for a PS molecular weight of  600000 
(Mw/Mn = 1.10). 

Figure 5 shows coexistence curves for poly(methyl 
methacrylate) (PMMA)/ethyl acetate and these systems 
exhibit LCST behaviours. The solid lines are predicted by 
this work. Open circles are experimental data by Muller 35. 
The model adjustable parameter values are r2 = 122.85, e/ 
k = 1 6 4 8 . 3 K  and 6 8 1 2 ] k  = -1897 .8K (PMMA Mw = 
37 100, Mw/Mn = 1.13); r 2 = 1300.0, e/k = -1051 .5K and 
6e12/k = 12085.0K (PMMA Mw = 92 800, Mw/Mn = 2.0). 
For a PMMA molecular weight of 92 800, the r2 value is 
slightly higher than expected. This may be due to the 
polydispersity of  PMMA. 

Figure 6 shows coexistence curves for PMMA/tetra- 
hydrofuran (THF) systems and the systems exhibit LCST 
behaviours. The solid lines are predicted by this work. Open 

35 circles are experimental data by Muller . The proposed 
model also predicts remarkably well the phase behaviours of  
the PMMA/THF systems. The model adjustable parameter 
values are r 2 = 179.78, e/k = 2040.8K and 6 e 1 2 / k  = 

-2266 .9K (PMMA Mw = 37 100, Mw/Mn = 1.13); r 2 = 
216.43, e/k = 1811.2K and t ~ e l 2 / k  = -2077 .3K (PMMA 
Mw = 100 100, Mw/Mn = 1.4). 

The proposed model does not consider the various 
flexibilities of chain molecules. However, a polymer 
molecule is not an ideal flexible chain, i.e. PS does not 

1 1 5 2  P O L Y M E R  V o l u m e  3 9  N u m b e r  5 1 9 9 8  
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Figure 5 Coexistence curves for two PMMA/ethyl acetate systems 
showing cloudpoint temperatures as functions of the weight fraction of 
PMMA. The solid lines are calculated from this work. Squares and circles 
are from Muller's experimental data for molecular weights (Mw) 37 100 
and 92 800, respectively 35 

have the same flexibility as PMMA. Furthermore, solvent 
molecules are considered to be monomers where the 
concept of flexibility does not apply. One more thing to 
be considered is that a segment of a polymer and a solvent 
molecule can hardly be considered as a sphere. Never- 
theless, the proposed model successfully predicts phase 
behaviours of the given polymer systems. 

CONCLUSIONS 

We proposed a modified double-lattice model by introdu- 
cing a new interaction parameter and simplifying the 
expression of the Helmholtz energy of mixing. We have 
shown several phase diagrams of some binary polymer 
solutions. For those binary polymer solutions, our proposed 
model appears to be useful in describing and predicting the 
liquid-liquid equilibria using a few adjustable parameters. 
The proposed model still needs to take into account free 
volume effects of polymers. 
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